非线性光学晶体是一类重要的光电功能晶体。它通过倍频、和频、差频、光参量放大和多光子吸收等非线性过程可以对激光进行调制和操纵。这类晶体被广泛应用于激光频率转换、四波混频、光束转向、图像放大、光信息处理、光存储、光纤通讯、水下通讯等研究领域。

非线性光学晶体是一类重要的光电功能晶体。它通过倍频、和频、差频、光参量放大和多光子吸收等非线性过程可以对激光进行调制和操纵。这类晶体被广泛应用于激光频率转换、四波混频、光束转向、图像放大、光信息处理、光存储、光纤通讯、水下通讯等研究领域。

亚硒酸盐因其含有活性孤对电子而在二阶非线性光学晶体材料中占有非常重要的地位,但该类化合物的倍频系数一般比相应的亚碲酸盐和碘酸盐小得多。为提高其倍频系数,一般采用引入畸变八面体配位构型的d0-过渡金属阳离子如Ti4+、Nb5+、Mo6+等的方法,但这样的化合物组成与结构往往比较复杂,影响其大晶体的制备。

亚硒酸盐化合物因含有活性孤对电子的Se4+,在外光电场作用下容易诱导出强的极化,从而产生大的非线性光学效应,因而在二阶非线性光学材料探索中有着重要的研究价值。长期以来,增强亚硒酸盐非线性光学材料的非线性光学效应主要是通过引入具有二阶姜-泰勒效应的d0过渡金属阳离子(如Ti4+,Nb5+,V5+,Mo6+等)等手段来实现的。然而,缺憾是当引入d0过渡金属阳离子增强光学效应的同时,通常会显著地减小材料的带隙值,并伴随着较差的抗激光损伤性能。

亚硒酸盐化合物因含有活性孤对电子的Se4+,在外光电场作用下容易诱导出强的极化,从而产生大的非线性光学效应,因而在二阶非线性光学材料探索中有着重要的研究价值。长期以来,增强亚硒酸盐非线性光学材料的非线性光学效应主要是通过引入具有二阶姜-泰勒效应的d0过渡金属阳离子(如Ti4+,Nb5+,V5+,Mo6+等)等手段来实现的。然而,缺憾是当引入d0过渡金属阳离子增强光学效应的同时,通常会显著地减小材料的带隙值,并伴随着较差的抗激光损伤性能。

在国家基金委重点项目、重大研究计划培育项目以及中国科学院战略性先导科技专项等资助下,中科院福建物质结构研究所结构化学国家重点实验室研究员毛江高和副研究员孔芳领导的研究团队提出对一些已知高倍频系数的化合物进行不等价取代的方法来设计新的高性能倍频晶体的新思路。他们以BiOIO3(倍频系数为KDP的12.5倍)为母体化合物,以SeO32–取代IO3–并同时以F-取代O2–离子,在温和水热条件下以Bi2O3与HF和SeO2反应得到了BiFSeO3(空间群Pca21),其结构与母体化合物有相当程度的相似性,Bi3+和亚硒酸根的孤对电子产生协同极化作用,从而该化合物表现出很强的倍频效应,其粉末倍频系数为KDP的13.5倍,为亚硒酸盐中最高值。理论计算表明Bi3+和SeO32–基团对d31的贡献百分比分别为62.8%和37.1%,相关研究结果发表在J.
Am. Chem. Soc.
上(2016,138, 9433−9436; DOI:
10.1021/jacs.6b06680)。此前,该研究团队利用不等价取代策略,得到了倍频系数为9.6倍KDP的Pb2TiOF2Cl(Chem.
Commun.
2013, 49, 9965−9967)和5倍KDP的Cs32(Inorg. Chem., 2015, 54,
3875−3882)。这些研究工作为今后新型二阶非线性光学晶体材料的设计提供了新的策略和思路。

近日,中国科学院理化技术研究所晶体中心林哲帅研究组在亚硒酸盐材料体系中,提出异价取代调控能带结构的分子设计策略,发现并合成了一例在可相位匹配的亚硒酸盐非线性光学材料中具有最宽带隙的新型材料Pb2GaF22Cl。通过移除过渡金属、引入主族元素和高电负性的氟元素,Pb2GaF22Cl的带隙扩宽至4.32
eV,且抗激光损伤阈值是现有同构材料的三倍,提高至120
MW/cm2。此外,Pb2GaF22Cl还表现出了较强的非线性光学响应,其倍频信号强度是同等粒径下KDP样品的4.5倍,在未来的高功率激光倍频领域有潜在的应用价值。此工作以Pb2GaF22Cl:
Band engineering strategy by aliovalent substitution for enlarging
bandgap while keeping strong second harmonic generation response

为题发表在美国化学会期刊J. Am. Chem. Soc.
(DOI:10.1021/jacs.8b11485)上,并被遴选为当期封面文章。

金沙国际平台 1

论文链接

相关文章