近期,固体所纳米材料与纳米结构研究室费广涛研究员课题组在等离子增强宽波段光电探测器方面取得进展,相关研究成果发表在Journal
of Materials Chemistry C
上。

近日,中国科学院合肥物质科学研究院固体物理研究所纳米材料与纳米结构研究室研究员费广涛课题组,在等离子增强宽波段光电探测器研究方面取得进展,相关研究成果发表在Journal
of Materials Chemistry C
上。

近期,中国科学院合肥物质科学研究院固体物理研究所研究员费广涛课题组在纳米材料光电探测研究方面取得系列进展,相关研究工作分别发表在Phys.
Chem. Chem. Phys.
, 2016, 18: 32691-32696、J. Mater. Chem. C, 2017, 5:
1471-1478、Appl. Surf. Sci., 2017, 407: 7-11和J. Mater. Sci., (DOI:
10.1007/s10853-017-0959-z)上,部分工作已申请中国发明专利。

作为一种传统的红外材料,硫化铅已被广泛应用于红外探测领域。近年来,由于纳米材料的量子尺寸局域效应,纳米型硫化铅材料已被广泛研究并应用于可见光探测器并表现出优良的性能。对于薄膜硫化铅探测器而言,目前其光电响应仍不理想,需要进一步提高薄膜硫化铅探测器的响应性能。

作为传统的红外材料,硫化铅广泛应用于红外探测领域。近年来,由于纳米材料的量子尺寸局域效应,纳米型硫化铅材料被广泛研究并应用于可见光探测器,表现出优良的性能。对薄膜硫化铅探测器而言,目前其光电响应仍不理想,需要进一步提高薄膜硫化铅探测器的响应性能。

光电探测在医疗诊断、生化分析、环境保护等领域有着重要作用,具有非常广泛的应用前景。提高探测器的响应度、信噪比、响应速度以及可实用化是研究人员一直努力追求的目标。课题组研究人员围绕这一目标开展了系列工作,在用于光电探测的纳米材料的制备及性能优化方面,取得了新进展:分别制备了钒氧化物纳米线有序阵列、二氧化钒/碳纳米管复合薄膜、碲纳米线有序阵列以及碲化铅网格结构纳米线等,并在上述材料基础上构筑了原型探测器。相关研究表明,结晶完好的纳米线能够有效降低电子输运中的界面和缺陷等因素影响,使电子传输通道更为顺畅,基于顺排纳米线和网格结构纳米线制备的光电探测器性能明显提高。

众所周知,常见贵金属纳米材料如Au、Ag、Pt、Cu等,具有表面等离子共振特性,能够在其周围产生强烈的电磁场增强。这种等离子共振增强特性可以应用于光活性器件中,比如光发射二极管、太阳能电池、光电探测器、光催化系统等等。相比于分布杂乱无序的贵金属结构来说,规整有序的金属结构能够进一步地增强其表面等离子共振效应。并且,具有有序排列的贵金属结构如金属孔阵列,金属天线阵列,金属光栅结构等可以通过调控其周期结构参数来调控其等离子共振频率特性,进而达到选择性增强的目的。

常见贵金属纳米材料如Au、Ag、Pt、Cu等,具有表面等离子共振特性,能够在其周围产生强烈的电磁场增强。这种等离子共振增强特性可以应用于光活性器件中,如光发射二极管、太阳能电池、光电探测器、光催化系统等。相比于分布杂乱无序的贵金属结构来说,规整有序的金属结构能够进一步增强其表面等离子共振效应。具有有序排列的贵金属结构如金属孔阵列、金属天线阵列、金属光栅结构等可以通过调控其周期结构参数来调控其等离子共振频率特性,进而达到选择性增强的目的。

成功制备大尺寸高度有序的氧化钒纳米线阵列

基于以上研究现状,费广涛研究员课题组硕士研究生谢秉合等采用化学浴沉积法制备出PbS薄膜,并利用超薄双通二氧化钛多孔膜为模板构筑了有序Au阵列/PbS薄膜复合光电探测器。由于Au有序阵列的等离子共振增强效应,复合薄膜光电探测器的响应率相比于纯PbS薄膜探测器得到125-175%的提高。进一步研究还发现这种增强表现出明显的波长选择性,当改变金纳米阵列的高度时,探测器响应率的最强增强波长位置会发生变化,即随着高度由30
nm增加到120
nm,最强增强峰位从可见光波段逐渐红移到近红外波段。以上研究结果将为等离子共振增强光电探测器的研究和发展提供新的思路和途径,也表现出潜在的应用价值。

基于以上研究现状,费广涛课题组硕士研究生谢秉合等采用化学浴沉积法制备出PbS薄膜,利用超薄双通二氧化钛多孔膜为模板构筑有序Au阵列/PbS薄膜复合光电探测器。由于Au有序阵列的等离子共振增强效应,复合薄膜光电探测器的响应率相比于纯PbS薄膜探测器得到125-175%的提高。进一步研究发现,这种增强表现出明显的波长选择性,当改变金纳米阵列的高度时,探测器响应率的最强增强波长位置会发生变化,即随着高度由30nm增加到120nm,最强增强峰位从可见光波段逐渐红移到近红外波段。该项工作将为等离子共振增强光电探测器研究和发展提供新的思路和途径,并表现出潜在的应用价值。

目前纳米材料光电特性的研究大部分集中在单根纳米线方面,他人的研究表明,单根纳米线的光电特性要好于常规市售的光电探测器。然而,由于单根纳米线的有效光照面积很小,导致所产生的光电流很小,需要非常精密的仪器来测量。如果将单根纳米丝排列起来,形成有序阵列,这样既可以发挥纳米材料光电特性好的优点,又能够最大限度地增加有效光照面积。基于此,课题组付文标等采用水热法制备了结晶度高、缺陷少的氧化钒纳米线,并将其顺排起来,成功地制备了大尺寸高度有序的氧化钒纳米线阵列,阵列尺寸可以达到平方毫米量级。所制备的V2O5光电探测器原型器件在入射波长为450nm下,表现出高的探测性能,器件响应度为160.3
mA/W,探测率为6.5×108Jones,响应时间为17~12 ms(J. Mater. Chem. C,
2017, 5:
1471-1478)。这项工作对推进阵列结构制备和在光电子器件等领域的应用都具有重要意义。

以上研究得到了国家重点研发计划课题和国家自然科学基金的资助。

研究工作得到了国家重点研发计划课题和国家自然科学基金的资助。

制备的二氧化钒/碳纳米管复合薄膜,具有较强红外光电响应

文章链接地址:

论文链接

热红外探测器是利用红外辐射的热效应引起探测器的温度变化而实现探测的,相对于光子型红外探测器来说,热红外探测器的优势是其与入射光波长无关,可以工作在室温,且成本低。VO2具有较大的温度电阻系数,碳纳米管具有热容小、导热快的特点。将VO2与碳纳米管复合起来,形成双层复合薄膜,这样就可以充分利用两者的优势,将碳纳米管上吸收的热迅速传给VO2,最大限度地增大红外光电特性。他们和清华大学纳米科技研究中心教授姜开利课题组合作,制备了碳纳米管与VO2双层复合膜。这种VO2/碳纳米管双层复合膜的红外光电响应特性明显高于单纯的VO2薄膜(J.
Mater. Sci.
, DOI: 10.1007/s10853-017-0959-z)。

图片 1

图片 2

碲纳米线有序阵列红外探测器研究取得进展

图1. 金纳米棒阵列修饰的硫化铅薄膜的扫描示意图

图1.金纳米棒阵列修饰的硫化铅薄膜的扫描示意图

碲是一种窄带隙半导体材料,室温下带隙约为0.35eV,具有优越的光电性能。相对于具有大量界面的纳米晶薄膜来说,单晶纳米线晶界少,对光生载流子的散射效应弱,因此表现出良好的光电特性,是目前研究的一大热点。如前所述,将单根纳米线顺排组装起来,形成有序阵列,将可以发挥纳米材料光电特性好的优点,又能够最大限度增加有效光照面积。

相关文章